Pearson Edexcel

Mark Scheme (Results)

Summer 2022

Pearson Edexcel International Advanced Level In Chemistry (WCH14)
Paper 01: Rates, Equilibria and Further Organic Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere
Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022
Question paper log number P70967A
Publications Code WCH14_01_2206_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is
essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Section A

| Question
 Number | Answer |
| :--- | :--- | :--- |
| $\mathbf{1 (a)}$ | The only correct answer is B (two) |
| | A is not correct because 2-methylpropan-2-ol has a peak for the $3 \mathrm{CH}_{3}$ groups and one for the OH group making 2 in total |
| | C is not correct because 2-methylpropan-2-ol has a peak for the $3 \mathrm{CH}_{3}$ groups and one for the OH group making 2 in total |
| | D is not correct because 2-methylpropan-2-ol has a peak for the $3 \mathrm{CH}_{3}$ groups and one for the OH group making 2 in total |

Question Number	Answer	Mark
$\mathbf{1 (b)}$	The only correct answer is A (propanal)	
	B is not correct because propane has 2 peaks in the ratio 3:1	
	C is not correct because propan-1-ol has 4 peaks in the ratio 3:2:2:1 	D is not correct because propan-2-ol has 3 peaks in the ratio is 6:1:1

Question Number	Answer	Mark
$\mathbf{1 (c)}$	The only correct answer is C (butanal)	
	A is not correct because butanoic acid has a singlet due to the COOH	
	B is not correct because butanone has a singlet due to the CH_{3} adjacent to the $\mathrm{C}=\mathrm{O}$	
	D is not correct because butan-1-ol has a singlet due to the OH	

Question Number	Answer	Mark
2	The only correct answer is $\mathbf{B}\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}\right)$ \boldsymbol{A} is not correct because there will not be a peak at m/z 29.0390 C is not correct because there will not be a molecular ion peak a m/z 58.0417 \boldsymbol{D} is not correct because there will not be molecular ion peak at $\mathrm{m} / \mathrm{z} 58.0417$ nor a peak at $\mathrm{m} / \mathrm{z} 29.0390$	(1)

Question Number	Answer	Mark
$\mathbf{3}$	The only correct answer is D (octan-1-ol, octanal, octane,)	
	A is not correct because octan-1-ol is the most polar so would have the shortest retention time \boldsymbol{B} is not correct because octan-1-ol is more polar than octanal and so would have a shorter retention time C is not correct because octane is non-polar so would have the longest retention time	

Question Number	Answer	Mark
$\mathbf{4}$	The only correct answer is C (0.75)	
	B is not correct because the calculation has used the distance from the solvent front to the sample not the baseline B is not correct because the calculation has been inverted	

Question Number	Answer	Mark
$\mathbf{5}$	The only correct answer is C (alkaline hydrolysis of an ester)	(1)
	A is not correct because this reaction will produce a carboxylic acid	
	B is not correct because this reaction will produce a carboxylic acid	
	D is not correct because this reaction will produce a carboxylic acid	

Question Number	Answer	Mark
$\mathbf{6}$	The only correct answer is C (3-methylpentan-3-ol)	
	A is not correct because this is a primary alcohol and so can be formed by the reduction of an aldehyde B is not correct because this is a secondary alcohol and so can be formed by the reduction of a ketone D is not correct because this is a secondary alcohol and so can be formed by the reduction of a ketone	

Question Number	Answer	Mark
7	The only correct answer is B (4.17) A is not correct because this is the -log of the concentration C is not correct because this is the -log of the K_{a} \mathbf{D} is not correct because this is the - log of the K_{a} multiplied by the concentration	(1)

$\left.\begin{array}{|l|l|c|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Answer } & \text { Mark } \\ \hline \mathbf{8} & \text { The only correct answer is B (13.43) } & \text { (1) } \\ & \text { A is not correct because this is the }-\log \left[\mathrm{OH}^{-}\right] \\ \text {C is not correct because it does not produce } 2 \times \mathrm{OH}^{-} \\ \text {D is not correct because the }-\log \left[\mathrm{OH}^{-}\right] \text {has been added to } \mathrm{p} K_{w}\end{array}\right]$

Question Number	Answer	Mark
9(a)	The only correct answer is D (hydrochloric acid added to ammonia)	(1)
	A is not correct because it is a weak acid and strong base	
\boldsymbol{B} is not correct because it is a strong acid and strong base		
C is not correct because it is a weak acid and weak base		

Question	Answer	Mark
Number	The only correct answer is C (methyl red)	(1)
9(b)	A is not correct because malachite green would change colour at about pH 1	
	B is not correct because methyl yellow would change colour at about pH 3.5	
D is not correct because thymol blue would change colour at about pH 9		

Question Number	Answer	Mark
10(a)	The only correct answer is C (Graph 3) \boldsymbol{A} is not correct because it is a rate v concentration graph for a second order reaction \boldsymbol{B} is not correct because it is a concentration v time graph for a zero order reaction \mathbf{D} is not correct because it is a rate v concentration graph for a first order reaction	(1)

| Question
 Number | Answer | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 0 (b)}$ | The only correct answer is D (Graph 4) | |
| | A is not correct because it is a graph of rate against concentration for a second order reaction | |
| B is not correct because it is a graph of concentration against time for a zero order reaction | | |
| | C is not correct because it is a graph of rate of reaction against concentration of the reactant for a zero order reaction | |

Question Number	Answer	Mark
$\mathbf{1 1 (a)}$	The only correct answer is A (colorimetry)	(1)
	B is not correct because the solution would not go cloudy	
	C is not correct because there is no base to titrate against	
	D is not correct because starch is an indicator and would immediately turn blue-black	

Question Number	Answer	Mark		
$\mathbf{1 1 (b)}$	The only correct answer is B (1.98)			
	A is not correct because the concentration of the acid has been increased three times			
C is not correct because the concentration of the acid has been decreased six times				
	D is not correct because the pH has been multiplied by three		\quad	(1)
:---:				

Question Number	Answer	Mark		
$\mathbf{1 2}$	The only correct answer is $\mathbf{A}\left(+38.8 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$			
	\boldsymbol{B} is not correct because the units are incorrect			
\boldsymbol{C} is not correct because the gradient has been divided by R				
	\boldsymbol{D} is not correct because the gradient has been divided by R and the units are incorrect		\quad	(1)
:---:				

Question Number	Answer	Mark
$\mathbf{1 3}$	A is not correct because vanadium oxide is a heterogeneous catalyst B is not correct because decreasing pressure would decrease the equilibrium yield of sulfur trioxide C is not correct because increasing the surface area of the catalyst will affect the rate not the equilibrium yield of sulfur trioxide	

Question Number	Answer	Mark
$\mathbf{1 4}$	The only correct answer is $\mathbf{A}\left(\mathrm{CaO}(\mathrm{s})<\mathrm{H}_{2} \mathrm{O}(\mathrm{l})<\mathrm{CO}_{2}(\mathrm{~g})<\mathrm{SO}_{2}(\mathrm{~g})\right)$	
	B is not correct because $\mathrm{SO}_{2}(g)$ has a greater standard molar entropy than $\mathrm{CO}_{2}(\mathrm{~g})$	
C is not correct because $\mathrm{SO}_{2}(g)$ has the greatest standard molar entropy		
D is not correct because $\mathrm{SO}_{2}(g)$ has the greatest standard molar entropy		

Question Number	Answer	Mark
$\mathbf{1 5}$	The only correct answer is B (PS)	
	A is not correct because R is smaller than S	
C is not correct because Q is larger than P and R is smaller than S		
	D is not correct because Q is larger than P	(1)

Section B

Question Number	Answer	Additional Guidance	Mark
16(a)(i)	$K_{\mathrm{p}}=\frac{p^{2} \mathrm{NH}_{3}}{p \mathrm{~N}_{2} p^{3} \mathrm{H}_{2}}$	Allow round or no brackets Allow upper case Allow pp/PP Allow $p\left(\mathrm{NH}_{3}\right)^{2} \quad p \mathrm{NH}_{3}{ }^{2} \quad$ etc Ignore units even if incorrect Do not award square brackets	(1)

Question	Answer	Additional Guidance			Mark (3)
16(a)(ii)	- mole fraction of N_{2} - mole fraction of H_{2} - both partial pressures	Example of completed table			
		Substance	Mole fraction	Partial pressure/atm	
		N_{2}	0.18	36	
		H_{2}	0.54	108	
		NH_{3}	0.28	56	
		TE for M3 on calculated mole fractions multiplied by 200			

Question Number	Answer	Additional Guidance	Mark
16(a)(iii)	An answer that makes reference to the following points: - correct use of K_{p} expression (1) - correct answer and 1 or 2 SF - correct units	Example of calculation $56^{2} \div\left(108^{3} \times 36\right)$ 7 or $6.9 \times 10^{-5} / 0.00007$ or 0.000069 Allow 3SF $6.92 \times 10^{-5} / 0.0000692$ Do not award $7.0 \times 10^{-5} / 0.000070$ atm^{-2} Allow TE from (a)(i) and (a)(ii) If mole fractions are used for the calculation max score 1 for the correct answer and 1-3 SF Correct answer with or without working scores 3	(3)

Question Number	Answer	Additional Guidance	Mark
16(a)(iv)	An answer that makes reference to the following points: - the (forward) reaction is/ must be exothermic - (more ammonia shows that) the equilibrium has moved/shifted to the right OR (more ammonia shows that) a new K_{p} is established which is larger	Allow reverse argument Allow favours forward reaction/shifts to the product side Allow K_{p} increases/eqm constant increases Ignore just 'more ammonia produced' or 'yield increases’	(2)

| Question
 Number | Answer | Additional Guidance |
| :--- | :---: | :---: | :---: |
| $\mathbf{1 6 (b) (i)}$ | $\bullet \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$ | (1)
 Do not award $\mathrm{NH}_{4}{ }^{+} \mathrm{Cl}^{-}(\mathrm{aq})$
 Do not award $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$ |
| | | Do not award any other state symbols |

Question Number	Answer	Additional Guidance
16(b)(ii)	$\bullet \Delta_{\text {sol }} H=\Delta_{\text {hyd }} H-$ Lattice Energy	Allow LE for Lattice Energy
	or	Allow $\Delta_{\text {sol }} H=-$ Lattice Energy + hydration enthalpies
	$\Delta_{\text {sol }} H=-$ Lattice Energy $+\Delta_{\text {hyd }} H$	Allow $\Delta_{\text {sol }} H=-$ Lattice Energy + hydration enthalpies
	Allow $\Delta H_{\text {hyd }}$ etc	
Ignore standard signs		

Question Number	Answer		Additional Guidance	Mark
16(b)(iii)	- enthalpy change of hydration of ammonium chloride - enthalpy change of solution	(1) (1)	Example of calculation $-307+(-378)=-685\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ Allow (kJ mol${ }^{-}$) $705+(-685)=(+) 20\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ Allow TE on arithmetical errors Do not award use of incorrect expression Correct answer with or without working scores 2 Units are not required but if wrong penalise only once.	(2)

Question Number	Answer	Additional Guidance	Mark
16(c)	- $\mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$	$\begin{aligned} & \text { Accept } \mathrm{NH}_{4}^{+} \longrightarrow \mathrm{NH}_{3}+\mathrm{H}^{+} \\ & \text {Allow eqm sign } \\ & \text { Ignore } \mathrm{NH}_{4} \mathrm{Cl} \longrightarrow \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-} \\ & \text {Ignore } \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{aq} \longrightarrow \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-} \\ & \text {Ignore state symbols even if incorrect } \\ & \text { Do not award } \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{aq} \longrightarrow \mathrm{NH}_{3}+\mathrm{HCl} \\ & \text { Do not award } \mathrm{NH}_{4} \mathrm{Cl} \longrightarrow \mathrm{NH}_{3}+\mathrm{HCl} \\ & \text { Do not award } \mathrm{NH}_{4} \mathrm{Cl} \longrightarrow \mathrm{NH}_{3}+\mathrm{H}^{+}+\mathrm{Cl}^{-} \\ & \text {Do not award } \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \longrightarrow \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \end{aligned}$	(1)

Question Number	Answer	Additional Guidance	Mark
17(a)	An answer that makes reference to the following points: - \mathbf{A} - B - C	Allow structural or skeletal formulae for max 2 marks Ignore any names even if incorrect Ignore bond angles/lengths Penalise missing Hs only once	(3)

Question Number	Answer	Additional Guidance	Mark
17(b)(i)	- 2-hydroxybutanenitrile	Allow 2-hydroxy(l)buta(n)nitrile Allow 2-hydroxy(l)butane-1-nitrile	(1)
		Do not award 2-hydroxobutanenitrile Do not award 2-oxobutanenitrile Do not award cyanides or other non IUPAC names	

| Question
 Number | Answer | Additional Guidance |
| :--- | :--- | :--- | :---: |
| 17(b)(ii) | (1)
 one isomer rotates (the plane of monochromatic)
 plane-polarised light in one direction and the other in
 the opposite direction/ the isomers rotate (the plane
 of) plane-polarised light in opposite
 directions/clockwise and anticlockwise | Do not award bends
 Allow different directions
 Allow for plane polarised light |
| Allow the direction of rotation of plane polarised light | | |
| Allow see which way the sample rotates PPL | | |

Question Number	Answer	Additional Guidance	Mark	
17(b)(iii)	An answer that makes reference to the following points:	(1)	Do not award just propanal is planar Do not award planar intermediate/carbocation Do not award any reference to nucleophilic substitution (S $\left.\mathrm{S}_{\mathrm{N}} 1 / \mathrm{S}_{\mathrm{N}} 2\right)$	(2)

Question Number	Answer	Additional Guidance	Mark
17(c)(i)		Ignore displayed or structural formulae Ignore bond lengths and bond angles Allow Ignore connectivity if vertical bond	(1)

| Question
 Number | Answer | Additional Guidance |
| :--- | :--- | :--- | :--- |
| 17(c)(ii) | Mark
 - no carbon atom has 4 different groups
 (central) carbon atom is bonded to two CH3/same
 groups
 or
 no asymmetric/chiral carbon atom
 or
 the compound is superimposable on its mirror
 image
 or
 it does not have a chiral centre | (1)
 Ignore symmetrical
 attached to the carbon atom |

Question Number	Answer	Additional Guidance	Mark
17(d)(i)	- correct chemical shift and carbon environment		(1)
		Chemical shift range Carbon environment	
		190-225 (ppm) C=O	
		OR	
		0-60 (ppm) \quad C-C	
		Both range and carbon environment required. Allow the full range or a number/ smaller range within the range.	
		Ignore any splitting patterns	

Question Number	Answer	Additional Guidance	Mark
17(d)(ii)	• Propanal: 3/three		(1)
	and		
	Propanone: 2/two		

(Total for Question 17 = 11 Marks)

The following table shows how the marks should be awarded for structure and lines of reasoning.

	Number of marks awarded for structure of Answer and sustained lines of reasoning
Answer shows a coherent logical structure with linkages and fully sustained lines of reasoning demonstrated throughout	2
Answer is partially structured with some linkages and lines of reasoning	1
Answer has no linkages between points and is unstructured	0

Question Number	Answer	Additional Guidance	Mark
19(a)(i)	An answer that makes reference to the following point: - $\mathrm{HCOOH}+\mathrm{KOH} \longrightarrow \mathrm{HCOOK}+\mathrm{H}_{2} \mathrm{O}$	Allow $\mathrm{HCOO}^{-} \mathrm{K}^{+} / \mathrm{HCOO}^{-}+\mathrm{K}^{+}$ Allow $\mathrm{HCOOH}+\mathrm{OH}^{-} \longrightarrow \mathrm{HCOO}^{-}+\mathrm{H}_{2} \mathrm{O}$ Allow Na in place of K Ignore state symbols even if incorrect Do not award HCOO - K	(1)

Question Number	Answer		Additional Guidance	Mark
19(a)(ii)	- correct volume read off the graph - correct concentration	(1) (1)	Example of calculation $22\left(\mathrm{~cm}^{3}\right)$ This may be noted on the graph $25.0 \times 0.15 / 22.0=0.17045\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ Ignore SF except 1SF Allow TE on wrong volume Correct answer scores 2	(2)

Question Number	Answer	Additional Guidance	Mark
19(a)(iii)	An answer that makes reference to the following points: - volume at half-neutralisation - pH value at half-neutralisation - calculation of K_{a}	$11 \mathrm{~cm}^{3}$ (Allow TE from volume in (a)(ii)) $\mathrm{pH}=3.8(\pm 0.1)$ (Hydrogen ion concentration $=10^{-3.8}$) $K_{\mathrm{d}}=1.5849 \times 10^{-4} / 0.00015849\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ Correct answer with no working scores 3 Allow TE throughout Ignore SF If 3.9 used (Hydrogen ion concentration $=10^{-3.9}$) $K_{\mathrm{a}}=1.2589 \times 10^{-4} / 0.00012589\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ If 3.7 used (Hydrogen ion concentration $=10^{-3.7}$) $K_{\mathrm{a}}=1.9953 \times 10^{-4} / 0.00019953\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ Allow TE from wrong pH	(3)

	Alternative method 2 (using pH of the methanoic acid at the start) - pH at the start - convert pH into H^{+}concentration - calculation of K_{a} 2.0 gives a value of $6.667 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ 2.1 gives a value of $4.206 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ 2.2 gives a value of $2.654 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ 2.3 gives a value of $1.674 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ 2.4 gives a value of $1.057 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ 2.5 gives a value of $3.162 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$	2.3 Allow 2.0-2.5 $\begin{aligned} & \text { Hydrogen ion concentration }=10^{-2.3} \\ & =5.0119 \times 10^{-3} / 0.0050119\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \\ & K_{\mathrm{a}}=\frac{\left(5.0119 \times 10^{-3}\right)^{2}}{0.15}=1.6746 \times 10^{-4} / 0.00016746\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \end{aligned}$ Correct answer with no working scores 3 Allow TE from wrong pH (i.e. not in the range of 2.0-2.5) Ignore SF

Question Number	Answer	Additional Guidance	Mark
19(b)	An answer that makes reference to the following points: - calculation of $\left[\mathrm{H}^{+}\right]$ (1) - correct ratio (1)	Example of calculation $\left[\mathrm{H}^{+}\right]=K_{\mathrm{a}} \times \frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]} \text {OR } \frac{\left[\mathrm{H}^{+}\right]}{K_{\mathrm{a}}}=\frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}$ $2.5119 \times 10^{-5} / 0.000025119$ $\frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}=\frac{2.5118864 \times 10^{-5}}{1.3 \times 10^{-5}}=1.9322: 1$ Correct answer with no working scores 2 Allow just 1.9322 Allow rounding to 2:1 Ignore SF Reciprocal ratio correctly identified $0.5175: 1$ scores 2 Correct answer with no working scores 2 Allow Henderson-Hasselbach equation $\begin{align*} & \mathrm{pH}=\mathrm{p} K \mathrm{a}-\log \frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]} \\ & 4.6=4.8861-\log \frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]} \tag{1}\\ & {[\mathrm{HA}]=1.9322: 1} \tag{1} \end{align*}$ [A^{-}] Allow just 1.9322 Ignore SF Reciprocal ratio correctly identified $0.5175: 1$ scores 2	(2)

Question Number	Answer	Additional Guidance	Mark
20(a)(i)	An answer that makes reference to two of the following points: - 2-bromobutane: first order as doubling the concentration (in experiments 1 and 2 where OH^{-}is constant) the rate doubles - hydroxide ions: zero order as doubling the concentration (in experiments 1 and 3 where 2-bromobutane is constant) the rate does not change OR hydroxide ions: zero order as doubling the concentration (in experiments 2 and 3) where the concentration of 2-bromobutane is halved the rate halves.	Two correct orders with no or incorrect reasoning scores 1 Note the reasoning can be shown on the table	(2)

| Question
 Number | Answer | Additional Guidance |
| :--- | :--- | :--- | :--- |
| 20(a)(ii) | \bullet rate $/ \mathrm{r}=k\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}\right]$ | (1) |
| | | TE on (i)
 Allow displayed or structural formulae
 Allow rate $=k\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}\right]^{1}\left[\mathrm{OH}^{-}\right]^{0}$
 Allow upper case K
 Allow reactants in any order
 Do not award round brackets |

Question Number	Answer	Additional Guidance	Mark
20(a)(iii)	An answer that makes reference to the following points: - correct calculation - correct units	Allow the calculation from any experiment Example of calculation from experiment 1 $1.01 \times 10^{-3} / 0.100=0.0101 / 1.01 \times 10^{-2}$ TE on (ii) Ignore SF s^{-1} Allow s- TE on (ii)	(2)

Section C

Question Number	Answer		Additional Guidance	Mark
21(a)(i)	- correct use of enthalpy data - correct enthalpy change	(1) (1)	Example of calculation $\begin{aligned} & -(-824.2)+(3 \times-110.5) \\ & =(+) 492.7\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$ Correct answer with or without working scores 2 The following score 1 for a single error: $(+) 713.7\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ not x 3 $-492.7\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ signs reversed Allow 3SF Penalise wrong units once only in (a)(i) and (ii)	(2)

Question Number	Answer		Additional Guidance	Mark
21(a)(ii)	- $\quad \sum S$ products - $\quad \sum S$ reactants - $\Delta S_{\text {system }}=\sum S$ products $-\sum S$ reactants	(1) (1) (1)	Example of calculation $\begin{aligned} & S=\text { products }(2 \times 27.3)+(3 \times 197.6)= \\ & 647.4\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \end{aligned}$ $S=\text { reactants } 87.4+(3 \times 5.7)=104.5\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$ $\Delta S_{\text {system }}=647.4-104.5=(+) 542.9\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$ Correct answer with no working scores 3 Allow TE for M3	(3)

Question Number	Answer		Additional Guidance	Mark
21(a)(iii)	- use of $\Delta S_{\text {surroundings }}=-\frac{\Delta H}{T}$ - at equilibrium $\Delta S_{\text {total }}=0=\Delta S_{\text {surroundings }}+\Delta S_{\text {system }}$ - calculation of temperature	(1) (1) (1)	Example of calculation $\begin{aligned} & \Delta S_{\text {surroundings }}=-(+492.7) \times 1000 / T \\ & 0=-492.7 \times 1000 / T+542.9 \\ & \geq 907.53(\mathrm{~K}) \\ & 0.90753 \text { scores } 2(\text { not } \times 1000) \\ & \text { Ignore SF } \\ & \text { TE on (a)(i) and (a)(ii) } \end{aligned}$ Correct answer based on ai and aii without working scores 3 Allow use of $\Delta G=\Delta H-T \Delta S_{\text {system }}$	(3)

Question Number	Answer		Additional Guidance	Mark
21(b)(i)	An answer that makes reference to the following points: - $\Delta S_{\text {surroundings }}$ and $\Delta S_{\text {system }}$ are positive - so $\Delta S_{\text {total }}$ will always be positive (so reaction will be feasible) OR Using $\Delta G=\Delta H-T \Delta S_{\text {system }}$ - Allow ΔH is negative and $\Delta S_{\text {system }}$ is positive - so ΔG will always be negative (so reaction will be feasible)	(1) (1) (1) (1)	Allow ΔH is negative/reaction exothermic and $\Delta S_{\text {system }}$ is positive M2 dependent on M1 M2 dependent on M1	(2)

Question Number	Answer	Additional Guidance	
21(b)(ii)	An answer that makes reference to the following points:		
	• at a higher temperature $\Delta S_{\text {surroundings will decrease }}$	(1)	Ignore reference to $\Delta S_{\text {total }}=$ Rlnk
	• $\Delta S_{\text {system }}$ does not change (significantly)	(1)	
	• so $\Delta S_{\text {total }}$ will decrease/become less positive	(1)	

Question Number	Answer		Additional Guidance	Mark
21(c)(i)	All 7 correct 3 marks $4-6$ correct 2 marks $2-3$ correct 1 mark	G	Allow values instead of letters	(3)

Question Number	Answer	Additional Guidance	Mark	
21(c)(iii)	- the electron is being added to a negative ion	(1)	This can be shown by an equation	(2)
	• and so there is repulsion (so energy is required)	(1)	Allow repulsion between the electrons	

(Total for Question $21=20$ Marks)
 (Total for Section C = 20 Marks)
 TOTAL FOR PAPER $=\mathbf{9 0}$ MARKS

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

